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Graphical Abstract

Summary
Since 1999, the best prediction (BP) method has been used in the United States to estimate unobserved daily 
and total lactation yields based on available test-day yields. Research shows that BP provides more accurate 
lactation yield estimates than previous methods. However, this method faces 2 major challenges. First, it 
reduces the variance of estimated yields relative to actual yields. This reduction in phenotypic variance is 
concerning for genetic evaluations, as it can lead to substantial underestimation of genetic variation. Second, 
measurement errors arise when projecting lactation yields from incomplete or inaccurate test-day records. 
These errors compromise the accuracy of lactation yield estimations by propagating through the calculation 
process, ultimately affecting the final genetic evaluation. This article provides an analytical review of BP, with a 
focus on addressing variance reduction and measurement errors.
Highlights

•	 Variance reduction is unavoidable in BP and linear regression models.
•	 Variance expansion factor and data collection ratio measures do not mitigate measurement errors.
•	 Measurement errors inherent in estimating daily milk yields are analytically explained.
•	 The challenges and possible solutions in dealing with measurement errors are illustrated.
•	 Alternative modeling strategies accounting for phenotypic errors are worth exploration. 
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Abstract: Best prediction (BP) has been used in the United States to estimate unobserved daily and lactation yields from known test-day 
yields since 1999. This method has proven more accurate than its predecessors. However, it has 2 remarkable challenges in practice. First, 
BP reduces the variance of estimated yields compared with actual yields. Reduced phenotypic variance represents a concern because it 
can significantly underestimate genetic variations in genetic evaluations. Second, measurement errors occur in the projected lactation 
yields from incomplete or inaccurate test-day records. These errors can adversely affect the accuracy of lactation yield estimations and 
the subsequent genetic evaluations. This article provides an analytical review of BP, focusing on variance reduction and measurement er-
rors. We demonstrate how variance reduction and measurement errors can be intrinsic to the method. Illustrative examples are presented, 
highlighting the practical challenges and possible solutions.

In the United States, it has been a long tradition for dairy farms to 
participate in a milk recording program in which their cows’ milk 

production is measured and documented monthly (Volker, 1981). 
Typically, a cow is milked twice or more frequently on a test-day. 
Still, not all these milkings are weighed, primarily as a strategy to 
curtail costs associated with DHIA supervisor visits (Putnam and 
Gilmore, 1968). Instead, test-day milk yields (MY) are estimated 
from partial yields. Then, estimated test-day MY are used to im-
pute unknown, non-test-day MY and extrapolate lactation MY up 
to 305 d (VanRaden, 1997; Cole et al., 2009). This same strategy 
is also used to estimate daily and lactation yields for milk fat and 
protein and to project SCC.

In February 1999, best prediction (BP) was officially adopted 
to estimate unobserved daily and lactation yields based on known 
test-day yields (VanRaden, 1997). Studies have shown that this 
method is more accurate than its predecessors for estimating 305-d 
yields (e.g., Norman et al., 1999). For estimating unknown daily 
or lactation MY, BP presupposes that their population means and 
(co)variances terms are known or estimated a priori, often taken to 
be the herd means from the previous year. Therefore, an unknown 
test-day or 305-d MY equates to the corresponding population 
average MY plus the covariance between the known and unknown 
MY, multiplied by the inverse of the variance for the known test-
day MY and multiplied again by the known test-day deviations. A 
lactation MY is then obtained by aggregating all the known and 
estimated daily MY up to 305 d.

Alternatively, lactation MY can be directly modeled as the un-
known quantity in BP. Let y  be an actual 305-d MY and x  be a 
vector of actual MY measured on test-days, both pertaining to the 

same animal. The BP approach estimates 305-d MY as follows 
(VanRaden, 1997):

	  y y x= + −( )′ −µ c xV 1 µ ,	 [1]

where c is a covariance vector between 305-d and test-day MY, 
V is the variance-covariance matrix between test-day MY, and µy 
and µx are the population averages for 305-d MY and test-day MY, 
respectively. Here, for the sake of notation convenience, we omit 
the subscript index for individual animals.

Using projected lactation MY from the BP approach presents 2 
major challenges in genetic evaluations: variance reduction and 
measurement errors. First, the BP approach can be viewed as a 
simple linear model with the regression coefficient defined by the 
known variance and covariance a priori. From the statistical view-
point, variance reduction is inevitable with linear regression (LR) 
models, recognized long ago as the intrinsic phenomenon of re-
gression known as “regression toward zero” (Galton, 1886). In es-
timating lactation MY from test-day MY, BP tended to have a 
smaller projected MY variance than actual MY variance (Weller, 
1988; VanRaden et al., 1991). In practice, LR is not “perfect,” and 
there is a nonzero variance of errors or residual effects. Consider a 
simple LR with an intercept: y = a + bx + e. The following inequal-
ity holds as long as b̂ is equal (or approximately) to b and Var(e) ≥ 
0:

	 Var y b Var x Var y b Var Var eˆ ˆ .( ) = ( ) ≤ ( ) = ( )+ ( )2 2 x 	 [2]
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In contrast, multiplicative correction factor (MCF) models can 
inflate the variance of estimated daily MY from partial daily MY. 
For example, the commonly used DeLorenzo-Wiggans (D-W; 
DeLorenzo and Wiggans, 1986) model implements local LR each 
without an intercept on various milking interval classes. Without 
an intercept, the predictor variable(s) must account not only for 
the variability related to its specific influence on the dependent 
variable but also for its overall mean. This often requires larger 
coefficients because each predictor must scale more considerably 
to fit the data points. Consequently, the range of predicted values 
can be substantially wider, amplifying the variance of the predic-
tions. The George Wiggans (GW; Wiggans, 1986) model, another 
widely used MCF approach, also inflates estimated yield variance. 
The GW model assumes a linear relationship between proportional 
daily MY and milking interval time. The reciprocal of the linear 
function of milk interval time defines the multiplicative correction 
factors for estimating test-day MY. While LR with an intercept 
tends to shrink the estimates, it, in turn, inflates multiplicative 
correction factors, thus leading to overestimated test-day MY in 
general.

In the Graphical Abstract (middle figure), we compared the 
estimated to actual daily MY variance ratios obtained from 3 meth-
ods: D-W, GW, and LR. Estimated test-day MY from the D-W and 
GW models had larger variances on average (10.7%–11.8%) than 
actual test-day MY variances, whereas LR resulted in a variance 
reduction (7.4%). Despite these differences, the R2 accuracies (Wu 
et al., 2023a,b) of estimated daily MY were within a comparable 
range for the 3 methods (Graphical Abstract, lower figure). The 
R2 accuracy was higher for the early lactation months than in later 
months because the variance of daily MY was the highest at the 
onset of milking and decreased afterward.

When unknown lactation MY are projected from estimated test-
day MY instead of actual test-day MY, the potential errors are yet 
to be dealt with. These measurement errors are expected to increase 
as the proportion of sampled milk intervals decreases. Statistically, 
measurement errors refer to the difference between a measured or 
actual value of a predictor or explanatory variable, which can be 
inherent in the measurement process. Measurement error can be 
divided into 2 categories: random and systematic (Taylor, 1999). 
The former are measurement errors that make measurable values 
randomly inconsistent when repeated measurements are taken. The 
latter errors are not determined by chance but are introduced by 
repeatable processes inherent to a biased system. Hence, random 
errors have a zero mean, but systematic errors do not, as the lat-
ter effects are not reduced when observations are averaged. For 
example, when estimating daily MY, systematic errors can arise 
due to the nonrandom treatments of many secondary variables 
or factors, such as DIM, milking frequencies, milking months or 
seasons, and milking intervals.

A hypothetical situation is shown in the Graphical Abstract. In 
this example, derived from a Holstein farm milking record dataset 
(Wu et al., 2023b), measurement errors arose because a pre-adjust-
ment of the effects due to months in milking and parities was made 
in the training but ignored in the testing. We randomly selected 
two-thirds of the data to train the D-W model and then tested for 
estimating test-day MY in the remaining data. The measurement 
errors were, on average, 4.0 kg, ranging from 3.01 kg (10th test-
day) to 5.00 kg (third test-day). Measurement errors decreased R2 

accuracies (0.634–0.834) compared with R2 accuracies without 
measurement errors (0.760–0.900).

In the United States, projected lactation yields from incomplete 
or partial lactation records were treated as having error variances 
greater than completed yields, and they received less emphasis 
in genetic evaluations (Wiggans and VanRaden, 1991). In real-
ity, projected lactation yields had less variance than completely 
recorded yields (VanRaden et al., 1991). Weller (1988) found that 
the sire and error variances of projected yields were less than the 
corresponding variances of complete yields, especially for projec-
tions made early in lactation. He proposed adjusting coefficients 
of mixed-effects model equations to make the model assumptions 
match their actual distributions. In practice, such adjustments were 
not computationally trivial, yet the improvement in the accuracy 
of genetic evaluations was slight (Weller, 1988). Moreover, it was 
equally possible that other model effects, such as permanent en-
vironmental and herd-sire interaction effects, also have reduced 
variance in projected records, which are yet not considered.

Alternatively, VanRaden et al. (1991) proposed using expansion 
factors to rescale the variance of projected MY. The idea resembles 
a reversed BP such that the actual total MY, denoted by t, is the 
best predictor of the expanded record q (VanRaden et al., 1991). 
Expansion factors can be calculated using phenotypic correlations 
or genetic standard deviations. In the former case, for instance, a 
theoretical expansion factor using only phenotypic information is 
proposed as follows:

	 x
Var t

Var p Corr p t
=

( )
( )
=

( )
1

,
,	 [3]

where Corr(p,t) is the phenotypic correlation between p and t. The 
above holds because Cov(p,t) = Var (p). When Var (p) ≤ Var (t), we 
always have x ≥ 1.

Meanwhile, data collection rating (DCR) was proposed and 
used by farmers and breeders to determine the relative data infor-
mation quality in relation to the standard, supervised plan encom-
passing 10 monthly tests (VanRaden, 1997). For a nonstandard 
milking plan, the DCR is defined as the squared correlation be-
tween predicted and actual lactation MY multiplied by 100 and 
divided by the squared correlation for a standard milking plan 
(VanRaden, 1997). Under this framework, a rating of 100 is re-
served for the standard plan (Powell and Norman, 2006). Now, 
consider applying the DCR to address projected lactation MY from 
estimated test-day MY (denoted by )̂y  compared with those pro-
jected from actual full-day test-day MY (denoted by y). Let y rep-
resent the actual lactation MY. Following VanRaden (1997), the 
DCR is the following:

	 DCR =
( )
( )












× =

( )
( )
×

r y y

r y y

Var y

Var y

ˆ ˆ,

, 

2

100 100..	 [4]

This holds assuming Cov y y var yˆ ˆ,( ) = ( ) and  
Cov y y Var y , ,( ) = ( )  meaning that the errors are not uncorrelated 
with the actual lactation yields.
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The following adjustment uses DCR as the expansion factor to 
rescale the variance of projected lactation MY from estimated test-
day MY to be comparable to the variance of projected lactation 
MY from wholly sampled test-day MY:

	 ˆ ˆ ˆ ˆ .*y y y y= + × −( )100

DCR
	 [5]

Here, ŷ  stands for the mean of ,̂y  ŷ* is the adjusted value of ,̂y  and 

x =
100

DCR
 is the expansion factor. In management, DCR pro-

vides a conceptual tool to gauge the expected data information or 
variation obtained from a particular test plan compared with a 
standard benchmark. For instance, Norman et al. (1999) showed 
that, based on Canadian monthly supervised milking data, DCR 
was 97, 95, and 90, respectively, for 2 of 3, 1 of 2, and 1 of 3 milk-
ings. Some breed associations have also selected certain minimum 
levels of DCR as a criterion for selecting cows.

Arguably, neither the expansion factor nor DCR represents a 
precise mitigation to measurement errors in the projected lactation 
MY from partially obtained test-day MY. VanRaden (1997) noted 
that the expected values of tests for partial and complete days were 
not equal even if the morning and evening MY were adjusted to 
a 24-h basis using correction factors for the number of milkings 
and milking intervals. He posited that the variance of a test-day 
yield imputed from a partial day ought to exceed that of a full day, 
attributing this to the incremental measurement errors introduced.

We consider measurement errors in 2 hypothetical scenarios to 
investigate their effects on the BP approach. First, suppose the BP 
equation is established using actual lactation and test-day MY, 
free of measurement errors. Then, measurement errors can be 
present when estimating lactation MY from estimated test-day 
MY with errors. Let x̂  and x  be the vectors of estimated and ac-
tual test-day MY, respectively, and let v be a vector of differences 
between them, quantifying the corresponding measurement er-
rors. That is,

	 x̂ x v= + .	 [6]

Without observing actual test-day MY x( ), the lactation MY is 
estimated from x̂  as follows:

	

ˆ ˆy y

y

y

= + −( )
= + + −( )
= + −( )+

′

′

′ ′

−

−

− −

µ

µ

µ

c x

c x v

c x c

V 1

1

1 1

µ

µ

µ

x

x

x

V

V V



 vv,

	 [7]

where the third term on the right side, ′ −c vV 1 , represents a system-
atic error term in the projected lactation MY.

Regression calibration, among the many with varied complex-
ity, can be used to mitigate covariate measurement errors (Prentice, 
1982). The idea is to apply iterated expectation, assuming nondif-
ferential error (i.e., when the measurement error is unrelated to the 
outcome). That is,

	

E y E E y

E E y

E y x

| | , |

| |

|

ˆ ˆ ˆ

ˆ

ˆ

x x x x

x x

c x x

( ) = ( )( )
= ( )( )
= + −( )′ −





µ V 1 µ(( )
= + ( )−( )′ −µy xEc x xV 1

 | .ˆ µ

	 [8]

The above regression calibration method relies on knowing 
E x x| ,ˆ( )  which may not always be possible. Instead, approxima-
tions are typically used, as follows:

	 E x xx x x


  

x x x| ,ˆ ˆˆ ˆ( ) ≈ + −( )−µ µC V 2 	 [9]

where µ
x is the mean of x, C

xx̂  is the covariance matrix between x  
and x̂, and Vx̂

2 is the variance-covariance matrix of x̂. All these 
variances and covariances are assumed to be known, or their values 
are estimated a priori.

In the second scenario, we assume the BP equation is constructed 
with projected lactation MY from estimated test-day MY; both are 
subject to measurement errors. Let c* be a vector of covariance be-
tween test-day MY and lactation MY. Let V* be the variance-cova-
riance matrix between test-day MY. Here, we reserve the notations 
of c and V as the covariance vector and variance-covariance matrix 
for BP without measurement errors. Furthermore, we denote a and 
B as the vector and matrix to contain their differences as follows:

	 a = c* − c,	 [10]

	 B = V* − V.	 [11]

Then, the BP equation with measurement errors can be expressed 
as follows:

	
ˆ ˆ

ˆ

*y y x

y x

= + −( )
= + +( )′ +( ) −( )

′−

−

µ c x

c a x

* 1

1

µ

µµ V B .
	 [12]

Noting (V + B)−1 = V−1 − V−1(VB−1 + I) −1 (Henderson and Searle, 
1981), we expand the above BP equation as follows:

ˆ ˆ*y y x

y

= + +( )′ − +( )








−( )

= + ′

− − −
−

−

µ c a x

c

V V VB I

V

1 1 1
1

1

µ

µ ˆ̂ .ˆx −( )




+µx yε

� [13]

The second term on the right-hand side of the above equation gives 
the error in the projected lactation MY:

εŷ =

− +( )








− +( )










′ ′− − −

−
− −

−
a cV V VB I V V I1 1 1

1
1 1

1
B 


−( )ˆ .x µx

� [14]
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Then, the projected lactation MY, adjusted for the measurement 
errors, is as follows:

	
ˆ ˆ

ˆ .*
ˆ

y

y
y x

y

= + −( )
= −

′ −µ

ε

c xV 1 µ
	 [15]

For illustration purposes, we simulated actual daily MY up to 305 
d for 3,000 cows using the Wood lactation curve (Wood, 1967):

	 yt = atbe−ct,	 [16]

where yt was MY on time t in days. The model parameters were 
sampled from a ~ TN(9.77,2.232), b ~ TN(0.18,0.062), and c ~ 
TN(0.004,0.00072), where TN stands for a truncated normal distri-
bution with all nonnegative values. The actual MY were simulated 
without including the error term. Then, random measurement er-
rors were simulated on test-days mimicking the within-test-day 

repeatability model, e Ni p~ , ,0
1 2−









ρ
σ

ρ
 where ρ = 0.75 and σp

2  is 

the phenotypic variance. Each animal’s observed test-day MY 
equaled the actual MY plus an error.

Table 1 shows the ratio of variances and covariances when pro-
jecting lactation MY from test-day MY with versus without mea-
surement errors. Measurement errors led to a significant increase 
in the variances of estimated test-day MY compared with actual 
variances. The variance ratios ranged between 1.289 and 1.356. 
Nevertheless, the covariances between lactation and test-day MY 
and between test-day MY changed only slightly, ranging from 
0.960 to 1.020. Coincidently, VanRaden (1997) noted that covari-
ances among tests for partial and complete days remained unal-
tered under the presumption of random and mutually independent 
measurement errors; only the projected MY variances increased. 
Best prediction compressed the variance of projected lactation MY, 
with the estimated variance being 74.4% of the actual lactation MY 
variance. Measurement errors also caused a significant shift in the 
mean of estimated lactation MY from actual lactation MY (Figure 

1). Scatterplots of estimated lactation yields from partial yields 
against those from actual daily yields are shown in Figure 2. Res-
caling the variance of estimated lactation MY to match the actual 
variance was straightforward, but it did not mitigate measurement 
errors. However, using the adjustment outlined in Equations 14 
and 15 resulted in an exact alignment between the distributions 
of projected and actual lactation yields, yielding a correlation of 1 
(Figure 1). This adjustment also perfectly matched the variance, as 
the actual MY were generated “ideally” from the Wood function 
without errors. In reality, however, lactation phenotypes do not 
precisely follow assumed lactation curves, and variance reduction 
may still occur. 

234Wu et al. | Variance reduction and measurement errors

Table 1. Ratios of variances (diagonal; in bold) and covariances (off diagonal) in the best prediction equations with versus 
without measurement errors1,2,3

Item x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

V*/V                    
  x1 1.356 0.996 1.024 1.016 1.027 1.008 1.022 1.012 1.031 0.997
  x2 0.996 1.309 0.991 0.985 0.974 0.968 0.980 0.971 0.980 0.960
  x3 1.024 0.991 1.357 1.004 0.983 0.975 1.002 0.977 0.980 0.982
  x4 1.016 0.985 1.004 1.346 0.992 0.989 1.019 1.001 1.011 0.987
  x5 1.027 0.974 0.983 0.992 1.351 0.988 1.013 0.985 1.002 0.988
  x6 1.008 0.968 0.975 0.989 0.988 1.309 1.000 0.961 0.985 0.972
  x7 1.022 0.980 1.002 1.019 1.013 1.000 1.347 0.986 1.006 0.994
  x8 1.012 0.971 0.977 1.001 0.985 0.961 0.986 1.289 0.986 0.975
  x9 1.031 0.980 0.980 1.011 1.002 0.985 1.006 0.986 1.304 0.991
  x10 0.997 0.960 0.982 0.987 0.988 0.972 0.994 0.975 0.991 1.291
c*/c                    
  y 1.020 0.974 0.995 1.016 0.993 0.986 1.013 0.989 0.989 0.982

1x1,. . ., x10 = 10 test-days; y = lactation yield up to 305 d.
2V* = variances and covariances between test-day milk yields (x1,. . ., x10) with measurement errors, compared with that 
without measurement errors (V).
3c* = vector of covariances between lactation yields (y) and test-day milk yields (x1,. . ., x10) with measurement errors, 
compared with that without measurement errors (c).

Figure 1. Comparing density plots of projected lactation milk yields obtained 
using best prediction (BP) under various scenarios. BP0 = lactation milk yields 
are estimated from actual test-day milk yields; BP1 = lactation milk yields are 
estimated from estimated test-day milk yields with measurement errors; BP2 
= lactation milk yields are estimated from estimated test-day milk yields with 
measurement errors and rescaled to the same variance of actual lactation 
milk yields; BP3 = lactation milk yields are estimated from estimated test-day 
milk yields with measurement errors, and adjusted for measurement errors 
according to Equation 15. The density plots of projected lactation milk yields 
using BP0 and BP3 entirely overlap. The dashed lines represent means.
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Note that the previously described decomposition of a project 
lactation MY is instructive but not a real-world example. The chal-
lenge is that the mitigation solution requires knowing the variance 
and covariance components, which may always be possible. A 
special case is one in which all the covariances due to measurement 
errors are zeros, such that, c* = c and 
B = ( )− − −Diag x k xk

τ σ1
1 2

2
1 2 1 2

1 2ˆ ˆ ˆ...x τ σ τ σ  is a diagonal matrix 

with off-diagonal elements τ1, . . . . . . , τk equaling the ratio of the 
estimated over actual test-day MY. Then, an approximate adjust-
ment can be formulated as follows:

ˆ ˆ( )y y x

y

= + − −( )
= + + −( )









′

′

−

− −
−

µ

µ

c x

c

V*

* * *

B

V V B V B

1

1 1
1

µ


−( )

= + −( ){ }+ −( )









′ ′− −
−

ˆ

ˆ ˆ

x

c x c x

µ

µ

x

y xµ V B V B* * *V1 1
1

−−( )µx .
� [17]

This holds because (V* − B)−1 = V*−1 + V*−1B(V* − B)−1. In [17], 
ˆ ˆ*y y x= + −( )′ −µ c xV* 1 µ  is the lactation MY projected from 
the estimated test-day MY with measurement errors, and 

δ = −( )








−( )′ −

−
c xV* *1

1
B V B ˆ µx  is an adjustment term.

Some key distinctions between lactation MY models and test-
day MY models for genetic evaluations are worth noting, as the 
methods discussed in this article are more relevant to lactation MY 
models. A lactation MY model leverages the high heritability of 
total lactation yield, providing assessments that are directly useful 
to dairy producers. Often, lactation models can better represent 
biological reality and the correlations among data points, espe-
cially at the extremes of days in milk, thus offering more accurate 
predictions of 305-d MY than test-day models with 3-term or 
4-term Legendre polynomials. An advantage of test-day models is 
that they allow for multiple genetic effects. Nevertheless, lactation 
models fit a single genetic effect across the lactation, simplifying 
the computation. This is another issue to consider when handling 
large data sets, such as those with 100 million or more lactation 
records.

In conclusion, variance reduction and measurement errors are 
2 major challenges when lactation MY projected from incomplete 
or inaccurate daily MY are used in genetic evaluations. In this 
review, we have analytically reviewed both topics. In dealing with 
the measurement errors, we have shown the analytical formulas, 
which are more illustrative than practical. In reality, precise mitiga-
tion of measurement errors can be challenging as no simple solu-
tions are available. Alternative modeling strategies that account for 
phenotypic errors, such as measurement errors or response-in-error 
models (Buonaccorsi, 2010), merit further exploration. Bayesian 
modeling also offers valuable approaches for handling measure-
ment errors in covariate and response variables (Bartlett and Ke-
ogh, 2018).
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Figure 2. Scatter plots of estimated lactation milk yield using BP1, BP2, and 
BP3, respectively, against estimated lactation milk yield using BP0.
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Nonstandard abbreviations used: BP = best prediction; BP0 = lactation milk 
yields are estimated from actual test-day milk yields; BP1 = lactation milk 
yields are estimated from estimated test-day milk yields with measurement 
errors; BP2 = lactation milk yields are estimated from estimated test-day milk 
yields with measurement errors and rescaled to the same variance of actual 
lactation milk yields; BP3 = lactation milk yields are estimated from estimated 
test-day milk yields with measurement errors, and adjusted for measurement 
errors according to Equation 15; DCR = data collection rating; D-W = DeLo-
renzo-Wiggans model; GW = George Wiggans model; LR = linear regression; 
MCF = multiplicative correction factor; MY = milk yield.
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